URANS simulations of static and dynamic maneuvering for surface combatant: part 1. Verification and validation for forces, moment, and hydrodynamic derivatives
Part 1 of this two-part paper presents the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives for a surface combatant Model 5415 bare hull under static and dyna...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and technology 2012-12, Vol.17 (4), p.422-445 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Part 1 of this two-part paper presents the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in regards to the computational fluid dynamics based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway, pure yaw, and combined yaw and drift motions at Froude number 0.28. The results are analyzed in view of: (1) the verification for iterative, grid, and time-step convergence along with assessment of overall numerical uncertainty; and (2) validations for forces and moment coefficients, hydrodynamic derivatives, and reconstruction of forces and moment coefficients from resultant hydrodynamic derivatives together with the available experimental data. Part 2 provides the validation for flow features with the experimental data as well as investigations for flow physics, e.g., flow separation, three dimensional vortical structure, and reconstructed local flows. |
---|---|
ISSN: | 0948-4280 1437-8213 |
DOI: | 10.1007/s00773-012-0178-x |