Thermal Cyclization of Phenylallenes That Contain ortho-1,3-Dioxolan-2-yl Groups: New Cascade Reactions Initiated by 1,5-Hydride Shifts of Acetalic HAtoms

A series of 2-(1,3-dioxolan-2-yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1-(2-hydroxy)-ethoxy-2-substituted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2013-11, Vol.19 (47), p.16093-16103
Hauptverfasser: Alajarin, Mateo, Bonillo, Baltasar, Marin-Luna, Marta, Sanchez-Andrada, Pilar, Vidal, Angel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of 2-(1,3-dioxolan-2-yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1-(2-hydroxy)-ethoxy-2-substituted naphthalenes by smooth thermal activation in toluene solution. Electron-withdrawing groups at the C3 position accelerated these tandem processes, which consisted of 1)an initial hydride-like [1,5]-H shift of the acetalic Hatom onto the central cumulene carbon atom; 2)a subsequent 6π-electrocyclic ring-closure of the resulting reactive ortho-xylylenes; and 3)a final aromatization step with concomitant ring-opening of the 1,3-dioxolane fragment. If the 1,3-dioxolane ring of the starting allenes was replaced by a dimethoxymethyl group, the reactions led to mixtures of two disubstituted naphthalenes, which were formed by the migration of either the acetalic Hatom or the methoxy group, with the latter migration occurring to a lesser extent. Two of the final 1,2-disubstituted naphthalenes were converted into their corresponding naphtho-fused dioxaphosphepine or dioxepinone through an intramolecular transesterification reaction. A DFT computational study accounted for the beneficial influence of the 1,3-dioxolane fragment on the carbon atom from which the H-shift took place and also of the electron-withdrawing substituents on the allene terminus. Remarkably, in the processes that contained a sulfonyl substituent, the conrotatory 6π-electrocyclization step was of lower activation energy than the alternative disrotatory mode. [PUBLICATION ABSTRACT]
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201301608