Balancing Energy Consumption in Heterogeneous Wireless Sensor Networks Using Genetic Algorithm

In a heterogeneous Wireless Sensor Network (WSN), factors such as initial energy, data processing capability, etc. greatly influence the network lifespan. Despite the success of various clustering strategies of WSN, the numerous possible sensor clusters make searching for an optimal network structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2015-12, Vol.19 (12), p.2194-2197
Hauptverfasser: Elhoseny, Mohamed, Xiaohui Yuan, Zhengtao Yu, Cunli Mao, El-Minir, Hamdy K., Riad, Alaa Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a heterogeneous Wireless Sensor Network (WSN), factors such as initial energy, data processing capability, etc. greatly influence the network lifespan. Despite the success of various clustering strategies of WSN, the numerous possible sensor clusters make searching for an optimal network structure an open challenge. In this paper, we propose a Genetic Algorithm based method that optimizes heterogeneous sensor node clustering. Compared with five state-of-the-art methods, our proposed method greatly extends the network life, and the average improvement with respect to the second best performance based on the first-node-die and the last-node-die is 33.8% and 13%, respectively. The balanced energy consumption greatly improves the network life and allows the sensor energy to deplete evenly. The computational efficiency of our method is comparable to the others and the overall average time across all experiments is 0.6 seconds with a standard deviation of 0.06.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2014.2381226