Effect of Chemical Treatment of Flax Fiber and Resin Manipulation on Service Life of Their Composites Using Time-Temperature Superposition

In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. As a result, the need for improving their mechanical properties, as well as service life modeling and predictions have arisen. In this study effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2015-10, Vol.7 (10), p.1965-1978
Hauptverfasser: Amiri, Ali, Ulven, Chad A, Huo, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. As a result, the need for improving their mechanical properties, as well as service life modeling and predictions have arisen. In this study effect of alkaline treatment of flax fiber as well as addition of 1% acrylic resin to vinyl ester on mechanical properties and long-term creep behavior of flax/vinyl ester composites was investigated. To perform the alkaline treatment, fibers were immersed into 1500 mL of 10 g/L sodium hydroxide/ethanol solution at 78 °C for 2 h. Findings revealed that alkaline treatment was successful in increasing interlaminar shear, tensile and flexural strength of the composite but decreased the tensile and flexural modulus by 10%. Addition of acrylic resin to the vinyl ester resin improved all mechanical properties except the flexural modulus which was decreased by 5%. In order to evaluate the long-term behavior, creep compliance master curves were generated using the time-temperature superposition principle. Results suggests that fiber and matrix treatments delay the creep response and slows the process of creep in flax/vinyl ester composites in the steady state region, respectively.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym7101493