Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities

Mussel-inspired chemistry (polydopamine) offers great opportunities to develop inexpensive and efficient process for many types of materials with complex shapes and functions in a mild and friendly environment. This paper describes a facile, yet green approach to synthesize polydopamine/silver (PDA/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2015-10, Vol.55, p.155-165
Hauptverfasser: Wu, Chengjiao, Zhang, Guoxing, Xia, Tian, Li, Zhenni, Zhao, Kai, Deng, Ziwei, Guo, Dingzong, Peng, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mussel-inspired chemistry (polydopamine) offers great opportunities to develop inexpensive and efficient process for many types of materials with complex shapes and functions in a mild and friendly environment. This paper describes a facile, yet green approach to synthesize polydopamine/silver (PDA/Ag) nanocomposite particles with a combination use of polydopamine chemistry and electroless metallization of Ag. In this approach, monodisperse spherical polydopamine particles are first synthesized by the oxidation and self-polymerization of dopamine (monomer) in an alkaline water–ethanol solution at room temperature, which are served as the active templates for secondary reactions due to the abundant catechol and amine groups on the surface. Subsequently, the silver precursor-[Ag(NH3)2]+ ions introduced are easily absorbed onto the surface of the PDA particles, and are immediately in situ reduced to metallic Ag nanoparticles with the help of these active catechol and amine groups. During the preparation, no additional reductants, toxic reagents and intricate instruments are needed. These as-synthesized PDA/Ag nanocomposite particles are ideal candidates for antibacterial application because they do not show significant cytotoxicity against HEK293T human embryonic kidney cells in the in vitro cytotoxicity assay, whereas demonstrate enhanced antibacterial abilities against Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria) in the antibacterial assays. Owing to their excellent cytocompatibilities and antibacterial activities, these PDA/Ag nanocomposite particles can be considered as the promising antibacterial materials for future biomedical applications. [Display omitted] •Polydopamine/silver nanocomposite particles were prepared by a facile, mild and green approach.•Polydopamine-assisted electroless Ag metallization procedure was detailed studied.•Polydopamine/silver nanocomposite particles showed a fine cytocompatibility.•Polydopamine/silver nanocomposite particles exhibited the extraordinary antibacterial activities.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2015.05.032