Design Considerations for Reconfigurable Delay Circuit to Emulate System Critical Paths
The design, analysis, and implementation of an accurate delay circuit used to synthesize critical paths in a microprocessor system are presented. The delay circuit includes a novel 64-step programmable calibration delay line that is highly uniform across a wide range of supply voltages and a reconfi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2015-11, Vol.23 (11), p.2714-2718 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design, analysis, and implementation of an accurate delay circuit used to synthesize critical paths in a microprocessor system are presented. The delay circuit includes a novel 64-step programmable calibration delay line that is highly uniform across a wide range of supply voltages and a reconfigurable delay path with tunable delay sensitivity to voltage variations. The calibration delay line generates delay step in picosecond range, which is less than 1% of the clock cycle time for the microprocessor. The reconfigurable path is capable of increasing voltage sensitivity of the delay circuit by 40% and emulating the steeper frequency versus voltage slope of the microprocessor in low-voltage domain. The proposed circuit is implemented inside the critical path monitor block placed on a test microprocessor core fabricated using 22-nm silicon-on-insulator CMOS process. Measurement results from nine test cores show that the circuit tracks microprocessor timing margin change with an error less than 1.3% of the core operating frequency over a wide supply voltage range. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2014.2364785 |