Synthesis and Characterization of Luminescent Cyclometalated Platinum(II) Complexes of 1,3-Bis-Hetero-Azolylbenzenes with Tunable Color for Applications in Organic Light-Emitting Devices through Extension of π Conjugation by Variation of the Heteroatom

A series of luminescent cyclometalated platinum(II) complexes of N^C^N ligands [N^C^N=2,6‐bis(benzoxazol‐2′‐yl)benzene (bzoxb), 2,6‐bis(benzothiazol‐2′‐yl)benzene (bzthb), and 2,6‐bis(N‐alkylnaphthoimidazol‐2′‐yl)benzene (naphimb)] has been synthesized and characterized. Two of the platinum(II) comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2013-10, Vol.19 (41), p.13910-13924
Hauptverfasser: Chan, Alan Kwun-Wa, Lam, Elizabeth Suk-Hang, Tam, Anthony Yiu-Yan, Tsang, Daniel Ping-Kuen, Lam, Wai Han, Chan, Mei-Yee, Wong, Wing-Tak, Yam, Vivian Wing-Wah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of luminescent cyclometalated platinum(II) complexes of N^C^N ligands [N^C^N=2,6‐bis(benzoxazol‐2′‐yl)benzene (bzoxb), 2,6‐bis(benzothiazol‐2′‐yl)benzene (bzthb), and 2,6‐bis(N‐alkylnaphthoimidazol‐2′‐yl)benzene (naphimb)] has been synthesized and characterized. Two of the platinum(II) complexes have been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. In dichloromethane solution at room temperature, the cyclometalated N^C^N platinum(II) complexes exhibited rich luminescence with well‐resolved vibronic‐structured emission bands. The emission energies of the complexes are found to be closely related to the electronic properties of the N^C^N ligands. By varying the electronic properties of the cyclometalated ligands, a fine‐tuning of the emission energies can be achieved, as supported by computational studies. Multilayer organic light‐emitting devices have been prepared by utilizing two of these platinum(II) complexes as phosphorescent dopants, in which a saturated yellow emission with Commission International de I′Eclairage coordinates of (0.50, 0.49) was achieved. Tunable emission: A series of luminescent PtII N C N complexes has been synthesized and shown to demonstrate tunable photoluminescence (see figure). Phosphorescent organic light‐emitting devices (PHOLEDs) with a saturated yellow emission and Commission International de I′Eclairage (CIE) coordinates of (0.50, 0.49) have been fabricated with good performance.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201301586