Imaging-based analysis of liposome internalization to macrophage cells: Effects of liposome size and surface modification with PEG moiety

[Display omitted] Liposome is one of the frequently used carriers for active targeting systems in vivo. Such parameters as its size, surface charge, and surface modifiers are known to influence the liposome uptake by macrophage cells. In this study, we investigated the effects of liposome size and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2015-12, Vol.136, p.786-790
Hauptverfasser: Lee, Jae Sun, Hwang, Sang Youn, Lee, E.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Liposome is one of the frequently used carriers for active targeting systems in vivo. Such parameters as its size, surface charge, and surface modifiers are known to influence the liposome uptake by macrophage cells. In this study, we investigated the effects of liposome size and polyethylene glycol (PEG) surface modifier on the liposomal internalization to murine macrophage (RAW-264.7), by using an imaging analysis technique. Three different sized liposomes (100, 200, and 400nm in nominal diameter) labeled with rhodamine fluorescence were used. Liposome internalization appeared to reach a pseudo-steady plateau in about 5h incubation, and most of the internalized liposomes were seen to accumulate in the cytosol including cellular extensions. The maximum fluorescent density from the internalized liposomes was similar between 100nm and 200nm liposomes. However, that of the larger 400nm liposome was approximately 1.7 times higher than the others, confirming the previous report that the larger the liposomes are the higher the degree of internalization is. When the outside of the 200nm liposomes was modified with biocompatible anchor molecule (BAM) consisting of PEG (ca. 2kD molecular weight) moiety, the endocytosis was indeed reduced by about 2.1-fold, despite the increase of the hydrodynamic size due to BAM conjugation. This fluorescence-based cellular imaging analysis can be used to quantitatively monitor and optimize cellular internalization systems.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2015.10.029