Collaborative Energy and Thermal Comfort Management Through Distributed Consensus Algorithms

Buildings with shared spaces such as corporate office buildings, university dorms, etc., are occupied by multiple occupants who typically have different temperature preferences. Attaining a common temperature set-point that is agreeable to all users (occupants) in such a multi-occupant space is a ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2015-10, Vol.12 (4), p.1285-1296
Hauptverfasser: Gupta, Santosh K., Kar, Koushik, Mishra, Sandipan, Wen, John T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Buildings with shared spaces such as corporate office buildings, university dorms, etc., are occupied by multiple occupants who typically have different temperature preferences. Attaining a common temperature set-point that is agreeable to all users (occupants) in such a multi-occupant space is a challenging problem. Furthermore, the ideal temperature set-point should optimally trade off the building energy cost with the aggregate discomfort of all the occupants. However, the information on the comfort range (function) is held privately by each occupant. Using occupant-differentiated dynamically-adjusted penalty factor as feedback signals, we propose a distributed solution which ensures that a consensus is attained among all occupants upon convergence, irrespective of their ideal temperature preferences being in coherence or conflicting. Occupants are only assumed to be rational, in that they choose their own temperature set-points so as to minimize their individual energy cost plus discomfort. We establish the convergence of the proposed algorithm to the optimal temperature set-point vector that minimizes the sum of the energy cost and the aggregate discomfort of all occupants in a multizone building. Simulations with realistic parameter settings illustrate validation of our theoretical claims and provide insights on the dynamics of the system with a mobile user population.
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2015.2468730