Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites

[Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2015-08, Vol.69, p.201-207
Hauptverfasser: Rivero, Omar, Huerta, Francisco, Montilla, Francisco, Sanchis, C., Morallón, Emilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue
container_start_page 201
container_title European polymer journal
container_volume 69
creator Rivero, Omar
Huerta, Francisco
Montilla, Francisco
Sanchis, C.
Morallón, Emilia
description [Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.
doi_str_mv 10.1016/j.eurpolymj.2015.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778029191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305715003080</els_id><sourcerecordid>1778029191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-224ec1e00e988e1ceb7d7da6019057ce8a851c334c5b88e44690fc9ea65a07dc3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG8iRS8I6ceLkiBAvCakH4Gzc9Qa5SuJiO4j-e1yKuHJaaTQzmv0Yu-BQcODN1bqg2W_csB3XRQm8LqApAMQBW_BWVjnvRH3IFgBc5BXU8pidhLAGAFk11YK93Q6E0TvUUQ_baDFzX9boaN2UuT7TAZ1fJVWjNVnSRgouRD9jnD2Z7NkuyxzdZJJgp_fsZwf5DN24ccFGCmfsqNdDoPPfe8pe725fbh7yp-X94831U46iEjEvS0HICYC6tiWOtJJGGt0A79JopFa3NceqElivkkGIpoMeO9JNrUEarE7Z5b53493HTCGq0QakYdATuTkoLmULZcc7nqxyb0XvQvDUq423o_ZbxUHtmKq1-mOqdkwVNCoxTcnrfZLSJ5-WvApoaUIy1ieMyjj7b8c3AbaHJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778029191</pqid></control><display><type>article</type><title>Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Rivero, Omar ; Huerta, Francisco ; Montilla, Francisco ; Sanchis, C. ; Morallón, Emilia</creator><creatorcontrib>Rivero, Omar ; Huerta, Francisco ; Montilla, Francisco ; Sanchis, C. ; Morallón, Emilia</creatorcontrib><description>[Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2015.06.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ascorbic acid ; Constants ; Copolymer poly(aniline-co-ABA) ; Copolymerization ; Copolymers ; Electronics ; Hibrid materials ; Mesostructured SiO2 ; Oxidation ; Preserves ; Silicon dioxide</subject><ispartof>European polymer journal, 2015-08, Vol.69, p.201-207</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-224ec1e00e988e1ceb7d7da6019057ce8a851c334c5b88e44690fc9ea65a07dc3</citedby><cites>FETCH-LOGICAL-c434t-224ec1e00e988e1ceb7d7da6019057ce8a851c334c5b88e44690fc9ea65a07dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305715003080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rivero, Omar</creatorcontrib><creatorcontrib>Huerta, Francisco</creatorcontrib><creatorcontrib>Montilla, Francisco</creatorcontrib><creatorcontrib>Sanchis, C.</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><title>Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites</title><title>European polymer journal</title><description>[Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.</description><subject>Ascorbic acid</subject><subject>Constants</subject><subject>Copolymer poly(aniline-co-ABA)</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Electronics</subject><subject>Hibrid materials</subject><subject>Mesostructured SiO2</subject><subject>Oxidation</subject><subject>Preserves</subject><subject>Silicon dioxide</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG8iRS8I6ceLkiBAvCakH4Gzc9Qa5SuJiO4j-e1yKuHJaaTQzmv0Yu-BQcODN1bqg2W_csB3XRQm8LqApAMQBW_BWVjnvRH3IFgBc5BXU8pidhLAGAFk11YK93Q6E0TvUUQ_baDFzX9boaN2UuT7TAZ1fJVWjNVnSRgouRD9jnD2Z7NkuyxzdZJJgp_fsZwf5DN24ccFGCmfsqNdDoPPfe8pe725fbh7yp-X94831U46iEjEvS0HICYC6tiWOtJJGGt0A79JopFa3NceqElivkkGIpoMeO9JNrUEarE7Z5b53493HTCGq0QakYdATuTkoLmULZcc7nqxyb0XvQvDUq423o_ZbxUHtmKq1-mOqdkwVNCoxTcnrfZLSJ5-WvApoaUIy1ieMyjj7b8c3AbaHJg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Rivero, Omar</creator><creator>Huerta, Francisco</creator><creator>Montilla, Francisco</creator><creator>Sanchis, C.</creator><creator>Morallón, Emilia</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150801</creationdate><title>Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites</title><author>Rivero, Omar ; Huerta, Francisco ; Montilla, Francisco ; Sanchis, C. ; Morallón, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-224ec1e00e988e1ceb7d7da6019057ce8a851c334c5b88e44690fc9ea65a07dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ascorbic acid</topic><topic>Constants</topic><topic>Copolymer poly(aniline-co-ABA)</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Electronics</topic><topic>Hibrid materials</topic><topic>Mesostructured SiO2</topic><topic>Oxidation</topic><topic>Preserves</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivero, Omar</creatorcontrib><creatorcontrib>Huerta, Francisco</creatorcontrib><creatorcontrib>Montilla, Francisco</creatorcontrib><creatorcontrib>Sanchis, C.</creatorcontrib><creatorcontrib>Morallón, Emilia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivero, Omar</au><au>Huerta, Francisco</au><au>Montilla, Francisco</au><au>Sanchis, C.</au><au>Morallón, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites</atitle><jtitle>European polymer journal</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>69</volume><spage>201</spage><epage>207</epage><pages>201-207</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2015.06.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2015-08, Vol.69, p.201-207
issn 0014-3057
1873-1945
language eng
recordid cdi_proquest_miscellaneous_1778029191
source Elsevier ScienceDirect Journals Collection
subjects Ascorbic acid
Constants
Copolymer poly(aniline-co-ABA)
Copolymerization
Copolymers
Electronics
Hibrid materials
Mesostructured SiO2
Oxidation
Preserves
Silicon dioxide
title Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20oxidation%20of%20ascorbic%20acid%20on%20mesostructured%20SiO2-conducting%20polymer%20composites&rft.jtitle=European%20polymer%20journal&rft.au=Rivero,%20Omar&rft.date=2015-08-01&rft.volume=69&rft.spage=201&rft.epage=207&rft.pages=201-207&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2015.06.004&rft_dat=%3Cproquest_cross%3E1778029191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778029191&rft_id=info:pmid/&rft_els_id=S0014305715003080&rfr_iscdi=true