Electrocatalytic oxidation of ascorbic acid on mesostructured SiO2-conducting polymer composites
[Display omitted] •Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer. The conducting self-doping copolymer pol...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2015-08, Vol.69, p.201-207 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Organic–inorganic hybrid composite has been electrochemically synthesized.•The hybrid composite is electroactive at pH 7.•The hybrid composite oxidizes ascorbic acid at pH 7.•The mesostructured SiO2 improves the conductivity of the polymer.
The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template. |
---|---|
ISSN: | 0014-3057 1873-1945 |
DOI: | 10.1016/j.eurpolymj.2015.06.004 |