NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)

It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2016-01, Vol.15 (1), p.85-90
1. Verfasser: Ozawa, Narutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 85
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 15
creator Ozawa, Narutaka
description It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}>0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.
doi_str_mv 10.1017/S1474748014000309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778027874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748014000309</cupid><sourcerecordid>1778027874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b927c18cdfeddee3542baf9fc21958f007865a9cb1834367855d66c3675f498b3</originalsourceid><addsrcrecordid>eNp1kMtOwkAUhidGExF9AHdN3OCiOtO5dllqgcZCSSkmuGna6dRAgGIHFu58DV_PJ3EQFkZjzuLcvv_PyQHgGsE7BBG_nyDCTQiICIQQQ_cEtMyI2tg0p981sff7c3Ch9QJChzkUtUB3FI_8eDicpl4aPgVWEniR5UX9oJt4oW_1g3gYpMnMinvWo_c8ePBGn-8fE2ucxOMgSWdWJ729BGdVvtTq6pjbYNoLUn9gR3E_9L3IlhSzrV24DpdIyLJSZakUpsQp8sqtpINcKioIuWA0d2WBBCaYcUFpyZg0Fa2IKwrcBp2D76apX3dKb7PVXEu1XOZrVe90hjgX0OGCE4Pe_EIX9a5Zm-sMhRkm0BHMUOhAyabWulFVtmnmq7x5yxDM9l_N_nzVaPBRk6-KZl6-qB_W_6q-AHZ1cg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736340286</pqid></control><display><type>article</type><title>NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)</title><source>Cambridge University Press Journals Complete</source><creator>Ozawa, Narutaka</creator><creatorcontrib>Ozawa, Narutaka</creatorcontrib><description>It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}&gt;0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748014000309</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Constants ; Geometry ; Mathematical analysis ; Mathematical models ; Spectra</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2016-01, Vol.15 (1), p.85-90</ispartof><rights>Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b927c18cdfeddee3542baf9fc21958f007865a9cb1834367855d66c3675f498b3</citedby><cites>FETCH-LOGICAL-c536t-b927c18cdfeddee3542baf9fc21958f007865a9cb1834367855d66c3675f498b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748014000309/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Ozawa, Narutaka</creatorcontrib><title>NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}&gt;0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.</description><subject>Algebra</subject><subject>Constants</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spectra</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwkAUhidGExF9AHdN3OCiOtO5dllqgcZCSSkmuGna6dRAgGIHFu58DV_PJ3EQFkZjzuLcvv_PyQHgGsE7BBG_nyDCTQiICIQQQ_cEtMyI2tg0p981sff7c3Ch9QJChzkUtUB3FI_8eDicpl4aPgVWEniR5UX9oJt4oW_1g3gYpMnMinvWo_c8ePBGn-8fE2ucxOMgSWdWJ729BGdVvtTq6pjbYNoLUn9gR3E_9L3IlhSzrV24DpdIyLJSZakUpsQp8sqtpINcKioIuWA0d2WBBCaYcUFpyZg0Fa2IKwrcBp2D76apX3dKb7PVXEu1XOZrVe90hjgX0OGCE4Pe_EIX9a5Zm-sMhRkm0BHMUOhAyabWulFVtmnmq7x5yxDM9l_N_nzVaPBRk6-KZl6-qB_W_6q-AHZ1cg4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ozawa, Narutaka</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)</title><author>Ozawa, Narutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b927c18cdfeddee3542baf9fc21958f007865a9cb1834367855d66c3675f498b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Constants</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozawa, Narutaka</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozawa, Narutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>15</volume><issue>1</issue><spage>85</spage><epage>90</epage><pages>85-90</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>It is well known that a finitely generated group ${\rm\Gamma}$ has Kazhdan’s property (T) if and only if the Laplacian element ${\rm\Delta}$ in $\mathbb{R}[{\rm\Gamma}]$ has a spectral gap. In this paper, we prove that this phenomenon is witnessed in $\mathbb{R}[{\rm\Gamma}]$. Namely, ${\rm\Gamma}$ has property (T) if and only if there exist a constant ${\it\kappa}&gt;0$ and a finite sequence ${\it\xi}_{1},\ldots ,{\it\xi}_{n}$ in $\mathbb{R}[{\rm\Gamma}]$ such that ${\rm\Delta}^{2}-{\it\kappa}{\rm\Delta}=\sum _{i}{\it\xi}_{i}^{\ast }{\it\xi}_{i}$. This result suggests the possibility of finding new examples of property (T) groups by solving equations in $\mathbb{R}[{\rm\Gamma}]$, possibly with the assistance of computers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748014000309</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2016-01, Vol.15 (1), p.85-90
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_miscellaneous_1778027874
source Cambridge University Press Journals Complete
subjects Algebra
Constants
Geometry
Mathematical analysis
Mathematical models
Spectra
title NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONCOMMUTATIVE%20REAL%20ALGEBRAIC%20GEOMETRY%20OF%20KAZHDAN%E2%80%99S%20PROPERTY%20(T)&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Ozawa,%20Narutaka&rft.date=2016-01-01&rft.volume=15&rft.issue=1&rft.spage=85&rft.epage=90&rft.pages=85-90&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748014000309&rft_dat=%3Cproquest_cross%3E1778027874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736340286&rft_id=info:pmid/&rft_cupid=10_1017_S1474748014000309&rfr_iscdi=true