Asymptotically exact a posteriori error estimators for first-order div least-squares methods in local and global norm
A new asymptotically exact a posteriori error estimator is developed for first-order div least-squares (LS) finite element methods. Let be LS approximate solution for . Then, is asymptotically exact a posteriori error estimator for or depending on the order of approximate spaces for and . For to be...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2015-08, Vol.70 (4), p.648-659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new asymptotically exact a posteriori error estimator is developed for first-order div least-squares (LS) finite element methods. Let be LS approximate solution for . Then, is asymptotically exact a posteriori error estimator for or depending on the order of approximate spaces for and . For to be asymptotically exact for , we require higher order approximation property for , and vice versa. When both and are approximated in the same order of accuracy, the estimator becomes an equivalent error estimator for both errors. The underlying mesh is only required to be shape regular, i.e., it does not require quasi-uniform mesh nor any special structure for the underlying meshes. Confirming numerical results are provided and the performance of the estimator is explored for other choice of spaces for . |
---|---|
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2015.05.010 |