Extremal dichotomy for uniformly hyperbolic systems

We consider the extreme value theory of a hyperbolic toral automorphism showing that, if a Hölder observation φ is a function of a Euclidean-type distance to a non-periodic point ζ and is strictly maximized at ζ, then the corresponding time series {φ○T i } exhibits extreme value statistics correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2015-10, Vol.30 (4), p.383-403
Hauptverfasser: Carvalho, Maria, Freitas, Ana Cristina Moreira, Freitas, Jorge Milhazes, Holland, Mark, Nicol, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the extreme value theory of a hyperbolic toral automorphism showing that, if a Hölder observation φ is a function of a Euclidean-type distance to a non-periodic point ζ and is strictly maximized at ζ, then the corresponding time series {φ○T i } exhibits extreme value statistics corresponding to an independent identically distributed (iid) sequence of random variables with the same distribution function as φ and with extremal index one. If, however, φ is strictly maximized at a periodic point q, then the corresponding time-series exhibits extreme value statistics corresponding to an iid sequence of random variables with the same distribution function as φ but with extremal index not equal to one. We give a formula for the extremal index, which depends upon the metric used and the period of q. These results imply that return times to small balls centred at non-periodic points follow a Poisson law, whereas the law is compound Poisson if the balls are centred at periodic points.
ISSN:1468-9367
1468-9375
DOI:10.1080/14689367.2015.1056722