Extremal dichotomy for uniformly hyperbolic systems
We consider the extreme value theory of a hyperbolic toral automorphism showing that, if a Hölder observation φ is a function of a Euclidean-type distance to a non-periodic point ζ and is strictly maximized at ζ, then the corresponding time series {φ○T i } exhibits extreme value statistics correspon...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2015-10, Vol.30 (4), p.383-403 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the extreme value theory of a hyperbolic toral automorphism
showing that, if a Hölder observation φ is a function of a Euclidean-type distance to a non-periodic point ζ and is strictly maximized at ζ, then the corresponding time series {φ○T
i
} exhibits extreme value statistics corresponding to an independent identically distributed (iid) sequence of random variables with the same distribution function as φ and with extremal index one. If, however, φ is strictly maximized at a periodic point q, then the corresponding time-series exhibits extreme value statistics corresponding to an iid sequence of random variables with the same distribution function as φ but with extremal index not equal to one. We give a formula for the extremal index, which depends upon the metric used and the period of q. These results imply that return times to small balls centred at non-periodic points follow a Poisson law, whereas the law is compound Poisson if the balls are centred at periodic points. |
---|---|
ISSN: | 1468-9367 1468-9375 |
DOI: | 10.1080/14689367.2015.1056722 |