The business impact of an integrated continuous biomanufacturing platform for recombinant protein production
•We estimate cost of goods (COGs) for an integrated continuous biomanufacturing (ICB) platform and compare to conventional platforms.•We use Monte Carlo simulations to estimate net present value (NPV) of this platform for a hypothetical product launch scenario.•The ICB platform reduces average cost...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2015-11, Vol.213, p.3-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We estimate cost of goods (COGs) for an integrated continuous biomanufacturing (ICB) platform and compare to conventional platforms.•We use Monte Carlo simulations to estimate net present value (NPV) of this platform for a hypothetical product launch scenario.•The ICB platform reduces average cost by 55% compared to conventional batch processing.•The ICB platform achieves these savings primarily due to process intensifications in upstream and downstream unit operations.
The biotechnology industry primarily uses batch technologies to manufacture recombinant proteins. The natural evolution of other industries has shown that transitioning from batch to continuous processing can yield significant benefits. A quantitative understanding of these benefits is critical to guide the implementation of continuous processing. In this manuscript, we use process economic modeling and Monte Carlo simulations to evaluate an integrated continuous biomanufacturing (ICB) platform and conduct risk-based valuation to generate a probabilistic range of net-present values (NPVs). For a specific ten-year product portfolio, the ICB platform reduces average cost by 55% compared to conventional batch processing, considering both capital and operating expenses. The model predicts that these savings can further increase by an additional 25% in situations with higher-than-expected product demand showing the upward potential of the ICB platform. The ICB platform achieves these savings and corresponding flexibility mainly due to process intensification in both upstream and downstream unit operations. This study demonstrates the promise of continuous bioprocessing while also establishing a novel framework to quantify financial benefits of other platform process technologies. |
---|---|
ISSN: | 0168-1656 1873-4863 |
DOI: | 10.1016/j.jbiotec.2015.05.010 |