Design of a Multimodal EEG-based Hybrid BCI System with Visual Servo Module

Current EEG-based brain-computer interface technologies mainly focus on how to independently use SSVEP, motor imagery, P300, or other signals to recognize human intention and generate several control commands. SSVEP and P300 require external stimulus, while motor imagery does not require it. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on autonomous mental development 2015-12, Vol.7 (4), p.332-341
Hauptverfasser: Duan, Feng, Lin, Dongxue, Li, Wenyu, Zhang, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current EEG-based brain-computer interface technologies mainly focus on how to independently use SSVEP, motor imagery, P300, or other signals to recognize human intention and generate several control commands. SSVEP and P300 require external stimulus, while motor imagery does not require it. However, the generated control commands of these methods are limited and cannot control a robot to provide satisfactory service to the user. Taking advantage of both SSVEP and motor imagery, this paper aims to design a hybrid BCI system that can provide multimodal BCI control commands to the robot. In this hybrid BCI system, three SSVEP signals are used to control the robot to move forward, turn left, and turn right; one motor imagery signal is used to control the robot to execute the grasp motion. In order to enhance the performance of the hybrid BCI system, a visual servo module is also developed to control the robot to execute the grasp task. The effect of the entire system is verified in a simulation platform and a real humanoid robot, respectively. The experimental results show that all of the subjects were able to successfully use this hybrid BCI system with relative ease.
ISSN:1943-0604
2379-8920
1943-0612
2379-8939
DOI:10.1109/TAMD.2015.2434951