Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes

Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-12, Vol.290, p.74-91
1. Verfasser: Roth, Agoston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 74
container_title Journal of computational and applied mathematics
container_volume 290
creator Roth, Agoston
description Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.
doi_str_mv 10.1016/j.cam.2015.05.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778000953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715002769</els_id><sourcerecordid>1778000953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-e97dd4b7689f8db75e61373fc4acfa26adf5746ad04365ca4500d5796e42285e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG85erDdpE2bFk-y-A8WvOjVkCYTzdI2NUkX99ubZT0LD97AvDcwP4SuKckpofVqmys55AWhVU6SSHmCFrThbUY5b07RgpScZ4QV_BxdhLAlhNQtZQv0sXZj9K7Hk7NjxJ0MoDH8SBWxhqC8naJ1I3YGR28_3egGSINafe0n8J3rrcJq9jsItzjM3kgFActR453r5wHCJTozsg9w9edL9P748LZ-zjavTy_r-02mSl7GDFquNet43bSm0R2voKZpYRSTysiiltpUnCUjrKwrJVlFiK54WwMriqaCcolujncn775nCFEMNijoezmCm4M4UEg_t1WZovQYVd6F4MGIydtB-r2gRBxYiq1ILMWBpSBJ5NC5O3Yg_bCz4EVQFkYF2npQUWhn_2n_As2nfgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778000953</pqid></control><display><type>article</type><title>Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Roth, Agoston</creator><creatorcontrib>Roth, Agoston</creatorcontrib><description>Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.05.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Basis transformation ; Control surfaces ; Curves and multivariate surfaces ; Derivatives ; Elevation ; Integrals ; Mathematical analysis ; Mathematical models ; Normalized B-basis functions ; Order elevation ; Polynomials ; Subdivision ; Transformations ; Trigonometric and hyperbolic polynomials</subject><ispartof>Journal of computational and applied mathematics, 2015-12, Vol.290, p.74-91</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-e97dd4b7689f8db75e61373fc4acfa26adf5746ad04365ca4500d5796e42285e3</citedby><cites>FETCH-LOGICAL-c373t-e97dd4b7689f8db75e61373fc4acfa26adf5746ad04365ca4500d5796e42285e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2015.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Roth, Agoston</creatorcontrib><title>Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes</title><title>Journal of computational and applied mathematics</title><description>Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.</description><subject>Basis transformation</subject><subject>Control surfaces</subject><subject>Curves and multivariate surfaces</subject><subject>Derivatives</subject><subject>Elevation</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Normalized B-basis functions</subject><subject>Order elevation</subject><subject>Polynomials</subject><subject>Subdivision</subject><subject>Transformations</subject><subject>Trigonometric and hyperbolic polynomials</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG85erDdpE2bFk-y-A8WvOjVkCYTzdI2NUkX99ubZT0LD97AvDcwP4SuKckpofVqmys55AWhVU6SSHmCFrThbUY5b07RgpScZ4QV_BxdhLAlhNQtZQv0sXZj9K7Hk7NjxJ0MoDH8SBWxhqC8naJ1I3YGR28_3egGSINafe0n8J3rrcJq9jsItzjM3kgFActR453r5wHCJTozsg9w9edL9P748LZ-zjavTy_r-02mSl7GDFquNet43bSm0R2voKZpYRSTysiiltpUnCUjrKwrJVlFiK54WwMriqaCcolujncn775nCFEMNijoezmCm4M4UEg_t1WZovQYVd6F4MGIydtB-r2gRBxYiq1ILMWBpSBJ5NC5O3Yg_bCz4EVQFkYF2npQUWhn_2n_As2nfgc</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Roth, Agoston</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151215</creationdate><title>Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes</title><author>Roth, Agoston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-e97dd4b7689f8db75e61373fc4acfa26adf5746ad04365ca4500d5796e42285e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Basis transformation</topic><topic>Control surfaces</topic><topic>Curves and multivariate surfaces</topic><topic>Derivatives</topic><topic>Elevation</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Normalized B-basis functions</topic><topic>Order elevation</topic><topic>Polynomials</topic><topic>Subdivision</topic><topic>Transformations</topic><topic>Trigonometric and hyperbolic polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Agoston</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Agoston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>290</volume><spage>74</spage><epage>91</epage><pages>74-91</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.05.003</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2015-12, Vol.290, p.74-91
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1778000953
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Basis transformation
Control surfaces
Curves and multivariate surfaces
Derivatives
Elevation
Integrals
Mathematical analysis
Mathematical models
Normalized B-basis functions
Order elevation
Polynomials
Subdivision
Transformations
Trigonometric and hyperbolic polynomials
title Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20point%20based%20exact%20description%20of%20trigonometric/hyperbolic%20curves,%20surfaces%20and%20volumes&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Roth,%20Agoston&rft.date=2015-12-15&rft.volume=290&rft.spage=74&rft.epage=91&rft.pages=74-91&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.05.003&rft_dat=%3Cproquest_cross%3E1778000953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778000953&rft_id=info:pmid/&rft_els_id=S0377042715002769&rfr_iscdi=true