Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes

Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-12, Vol.290, p.74-91
1. Verfasser: Roth, Agoston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2015.05.003