Properties of ceramic-reinforced aluminium matrix composites - a review

A review of various properties of ceramic-reinforced aluminium matrix composites is presented in this paper. The properties discussed include microstructural, optical, physical and mechanical behaviour of ceramic-reinforced aluminium matrix composites and effects of reinforcement fraction, particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical and materials engineering 2014-12, Vol.9 (1), p.1-16, Article 12
Hauptverfasser: Das, Dipti Kanta, Mishra, Purna Chandra, Singh, Saranjit, Thakur, Ratish Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A review of various properties of ceramic-reinforced aluminium matrix composites is presented in this paper. The properties discussed include microstructural, optical, physical and mechanical behaviour of ceramic-reinforced aluminium matrix composites and effects of reinforcement fraction, particle size, heat treatment and extrusion process on these properties. The results obtained by many researchers indicated the uniform distribution of reinforced particles with localized agglomeration at some places, when the metal matrix composite was processed through stir casting method. The density, hardness, compressive strength and toughness increased with increasing reinforcement fraction; however, these properties may reduce in the presence of porosity in the composite material. The particle size of reinforcements affected the hardness adversely. Tensile strength and flexural strength were observed to be increased up to a certain reinforcement fraction in the composites, beyond which these were reduced. The mechanical properties of the composite materials were improved by either thermal treatment or extrusion process. Initiation and growth of fine microcracks leading to macroscopic failure, ductile failure of the aluminium matrix, combination of particle fracture and particle pull-out, overload failure under tension and brittle fracture were the failure mode and mechanisms, as observed by previous researchers, during fractography analysis of tensile specimens of ceramic-reinforced aluminium matrix composites.
ISSN:1823-0334
2198-2791
DOI:10.1186/s40712-014-0012-9