Covalence and Ionicity in MgAgAs-Type Compounds

MgAgAs‐type “half‐Heusler” compounds are known to realize two out of three possible atomic arrangements of this structure type. The number of transition metal components typically determines which of the alternatives is favored. On the basis of DFT calculations for all three variants of 20 eight‐ an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2014-07, Vol.20 (31), p.9702-9708
Hauptverfasser: Bende, David, Grin, Yuri, Wagner, Frank R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MgAgAs‐type “half‐Heusler” compounds are known to realize two out of three possible atomic arrangements of this structure type. The number of transition metal components typically determines which of the alternatives is favored. On the basis of DFT calculations for all three variants of 20 eight‐ and eighteen‐valence‐electron compounds, the experimentally observed structural variant was found to be determined by basically two different bonding patterns. They are quantified by employing two complementary position‐space bonding measures. The Madelung energy ${E_{\rm{M}}^{{\rm{QTAIM}}} }$ calculated with the QTAIM effective charges reflects contributions of the ionic interactions to the total energy. The sum of nearest‐neighbor delocalization indices ςnn characterizes the covalent interactions through electron sharing. With the aid of these quantities, the energetic sequence of the three atomic arrangements for each compound is rationalized. The resulting systematic is used to predict a scenario in which an untypical atomic arrangement becomes most favorable. Two out of three possible atomic arrangements are realized in nature for semiconductors with the MgAgAs type of crystal structure. For a given compound the preferred variant is determined by the balance between the complementary bonding factors covalence and ionicity, which are quantified in position space by employing the QTAIM method and point‐charge electrostatics (see figure).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201400299