Hydride-Rhodium(III)-N-Heterocyclic Carbene Catalysts for Vinyl-Selective H/D Exchange: A Structure-Activity Study

A series of neutral and cationic RhIII‐hydride and RhIII‐ethyl complexes bearing a NHC ligand has been synthesized and evaluated as catalyst precursors for H/D exchange of styrene using CD3OD as a deuterium source. Various ligands have been examined in order to understand how the stereoelectronic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2014-07, Vol.20 (27), p.8391-8403
Hauptverfasser: Di Giuseppe, Andrea, Castarlenas, Ricardo, Pérez-Torrente, Jesús J., Lahoz, Fernando J., Oro, Luis A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of neutral and cationic RhIII‐hydride and RhIII‐ethyl complexes bearing a NHC ligand has been synthesized and evaluated as catalyst precursors for H/D exchange of styrene using CD3OD as a deuterium source. Various ligands have been examined in order to understand how the stereoelectronic properties can modulate the catalytic activity. Most of these complexes proved to be very active and selective in the vinylic H/D exchange, without deuteration at the aromatic positions, displaying very high selectivity toward the β‐positions. In particular, the cationic complex [RhClH(CH3CN)3(IPr)]CF3SO3 showed excellent catalytic activity, reaching the maximum attainable degree of β‐vinylic deuteration in only 20 min. By modulation of the catalyst structure, we obtained improved α/β selectivity. Thus, the catalyst [RhClH(κ2‐O,N‐C9H6NO)(SIPr)], bearing an 8‐quinolinolate ligand and a bulky and strongly electron‐donating SIPr as the NHC, showed total selectivity for the β‐vinylic positions. This systematic study has shown that increased electron density and steric demand at the metal center can improve both the catalytic activity and selectivity. Complexes bearing ligands with very high steric hindrance, however, proved to be inactive. A series of H‐RhIII‐NHC complexes with different ancillary ligands has been synthesized and evaluated as catalyst precursors in H/D exchange of α‐olefins (see figure). An adequate balance between steric hindrance and electron donation provides a catalytic system with outstanding activity and total selectivity for deuteration at β‐vinyl positions.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201402499