Activin A Maintains Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers

To date, all human embryonic stem cells (hESCs) available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Activation of STAT3 by leukemia inhibitory factor is required to maintain “stemness” in mouse embryonic ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells (Dayton, Ohio) Ohio), 2005-04, Vol.23 (4), p.489-495
Hauptverfasser: Beattie, Gillian M., Lopez, Ana D., Bucay, Nathan, Hinton, Andrew, Firpo, Meri T., King, Charles C., Hayek, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, all human embryonic stem cells (hESCs) available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Activation of STAT3 by leukemia inhibitory factor is required to maintain “stemness” in mouse embryonic stem cells, but not in hESCs, suggesting the existence of alternate signaling pathways for self‐renewal and pluripotency in human cells. Here we show that activin A is secreted by mouse embryonic feeder layers (mEFs) and that culture medium enriched with activin A is capable of maintaining hESCs in the undifferentiated state for >20 passages without the need for feeder layers, conditioned medium from mEFs, or STAT3 activation. hESCs retained both normal karyotype and markers of undifferentiated cells, including Oct‐4, nanog, and TRA‐1‐60 and remained pluripotent, as shown by the in vivo formation of teratomas.
ISSN:1066-5099
1549-4918
DOI:10.1634/stemcells.2004-0279