Ultraviolet irradiation increases the sensitivity of cultured human skin cells to cadmium probably through the inhibition of metallothionein gene expression
We previously developed an apparatus that can irradiate cultured cells with monochromatic ultraviolet (UV) rays to exactly assess the biological effects of UV components on mammalian cells. Using this device, we studied the effects of UV in and near the UVB region on the general as well as specific...
Gespeichert in:
Veröffentlicht in: | Toxicology and applied pharmacology 2004-11, Vol.200 (3), p.251-257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We previously developed an apparatus that can irradiate cultured cells with monochromatic ultraviolet (UV) rays to exactly assess the biological effects of UV components on mammalian cells. Using this device, we studied the effects of UV in and near the UVB region on the general as well as specific protein synthesis of the human skin-derived NB1RGB cells. We found that Cd-induced synthesis of metallothioneins (MTs), which are the proteins involved in the protection against heavy metals and oxidative stress, is inhibited by UV at 280 nm more extensively than total protein synthesis. Such an inhibition was observed when MTs were induced by different inducers such as Cd, Zn, and dexamethasone in three human cell lines, indicating that it is not an event specific to a certain inducer or a certain cell type. By contrast, UV at 300 or 320 nm showed only a marginal effect. UV at 280 nm was likely to block MT gene transcription because Cd-induced increase of MT mRNA was strongly inhibited by irradiation. Cd induction of 70-kDa heat shock protein mRNA was also inhibited by UV irradiation, suggesting that the expression of inducible genes are commonly sensitive to UV. Furthermore, we observed that the irradiation of UV at 280 nm renders NB1RGB cells extremely susceptible to Cd, probably due to the reduced MT synthesis. These observations strongly suggest that UV at 280 nm severely damages cellular inducible protective functions, warning us of a new risk of UV exposure. |
---|---|
ISSN: | 0041-008X 1096-0333 |
DOI: | 10.1016/j.taap.2004.04.014 |