Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2014-12, Vol.9 (12), p.124011
Hauptverfasser: Scanlon, Bridget R, Reedy, Robert C, Philippe Nicot, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ∼16% of total water consumption in the play area. Projected HF water demand of ∼330 bgal with ∼62 000 additional wells over the next 20 years equates to ∼10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ∼1000 bgal over 20 yr from recharge and ∼10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ∼100-200 ft in ∼6% of the western play area since HF began in 2009-2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ∼3% of fresh and ∼1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/9/12/124011