Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies

Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied phycology 2016-04, Vol.28 (2), p.1111-1123
Hauptverfasser: Wang, Wenjing, Shen, Hong, Shi, Pengling, Chen, Jun, Ni, Leyi, Xie, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 2
container_start_page 1111
container_title Journal of applied phycology
container_volume 28
creator Wang, Wenjing
Shen, Hong
Shi, Pengling
Chen, Jun
Ni, Leyi
Xie, Ping
description Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.
doi_str_mv 10.1007/s10811-015-0659-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776659199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776659199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-806aea9d8cf5af4aae2eb9d41026d5a916e03eeb05c01499cb1f49d965e27ee03</originalsourceid><addsrcrecordid>eNp9kD1PxDAMhiMEEsfHD2AiEgtLwW6btBkR4ksCMQBzlEtdLqjXHEkPcf-elDIgBibL8vNa9sPYEcIZAlTnEaFGzABFBlKoTGyxGYqqyARWcpvNQOWY1arCXbYX4xsAqBrrGaOrzxUFt6R-MB2nD9dQb4m3PvBhQTz4jrhv-YIGCn4IfrVwls-NTa0z3PXfVKKXZnC-H9EHZ4O3mzi4yK3vfO8oHrCd1nSRDn_qPnu5vnq-vM3uH2_uLi_uMytADVkN0pBRTW1bYdrSGMpprpoSIZeNMAolQUE0B2EBS6XsHNtSNUoKyitKs312Ou1dBf--pjjopYuWus705NdRY1XJZAeVSujJH_TNr0OfrhupXBRSliJROFHppxgDtXqVZJmw0Qh6FK8n8TqJ16N4PWbyKRMT279S-LX5n9DxFGqN1-Y1uKhfnnJACYAgClUWX0xEkFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772536645</pqid></control><display><type>article</type><title>Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies</title><source>Springer Nature Link eJournals</source><creator>Wang, Wenjing ; Shen, Hong ; Shi, Pengling ; Chen, Jun ; Ni, Leyi ; Xie, Ping</creator><creatorcontrib>Wang, Wenjing ; Shen, Hong ; Shi, Pengling ; Chen, Jun ; Ni, Leyi ; Xie, Ping</creatorcontrib><description>Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-015-0659-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerogenes ; Aeromonas veronii ; Bacillus cereus ; Bacteria ; benzoic acid ; Biomedical and Life Sciences ; Brackish ; coculture ; Ecology ; Enterobacter aerogenes ; Eutrophic lakes ; Eutrophication ; Exiguobacterium ; Exiguobacterium acetylicum ; Filtrate ; filtrates ; Freshwater &amp; Marine Ecology ; Gas chromatography ; gas chromatography-mass spectrometry ; lakes ; Life Sciences ; Mass spectrometry ; Microcystis ; Microcystis aeruginosa ; Microcystis wesenbergii ; morphs ; Plant Physiology ; Plant Sciences ; polysaccharides ; Saccharides ; Shewanella putrefaciens ; Water analysis</subject><ispartof>Journal of applied phycology, 2016-04, Vol.28 (2), p.1111-1123</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-806aea9d8cf5af4aae2eb9d41026d5a916e03eeb05c01499cb1f49d965e27ee03</citedby><cites>FETCH-LOGICAL-c509t-806aea9d8cf5af4aae2eb9d41026d5a916e03eeb05c01499cb1f49d965e27ee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10811-015-0659-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10811-015-0659-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Wenjing</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Shi, Pengling</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Ni, Leyi</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><title>Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><description>Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.</description><subject>Aerogenes</subject><subject>Aeromonas veronii</subject><subject>Bacillus cereus</subject><subject>Bacteria</subject><subject>benzoic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Brackish</subject><subject>coculture</subject><subject>Ecology</subject><subject>Enterobacter aerogenes</subject><subject>Eutrophic lakes</subject><subject>Eutrophication</subject><subject>Exiguobacterium</subject><subject>Exiguobacterium acetylicum</subject><subject>Filtrate</subject><subject>filtrates</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gas chromatography</subject><subject>gas chromatography-mass spectrometry</subject><subject>lakes</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Microcystis</subject><subject>Microcystis aeruginosa</subject><subject>Microcystis wesenbergii</subject><subject>morphs</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>polysaccharides</subject><subject>Saccharides</subject><subject>Shewanella putrefaciens</subject><subject>Water analysis</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PxDAMhiMEEsfHD2AiEgtLwW6btBkR4ksCMQBzlEtdLqjXHEkPcf-elDIgBibL8vNa9sPYEcIZAlTnEaFGzABFBlKoTGyxGYqqyARWcpvNQOWY1arCXbYX4xsAqBrrGaOrzxUFt6R-MB2nD9dQb4m3PvBhQTz4jrhv-YIGCn4IfrVwls-NTa0z3PXfVKKXZnC-H9EHZ4O3mzi4yK3vfO8oHrCd1nSRDn_qPnu5vnq-vM3uH2_uLi_uMytADVkN0pBRTW1bYdrSGMpprpoSIZeNMAolQUE0B2EBS6XsHNtSNUoKyitKs312Ou1dBf--pjjopYuWus705NdRY1XJZAeVSujJH_TNr0OfrhupXBRSliJROFHppxgDtXqVZJmw0Qh6FK8n8TqJ16N4PWbyKRMT279S-LX5n9DxFGqN1-Y1uKhfnnJACYAgClUWX0xEkFo</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Wang, Wenjing</creator><creator>Shen, Hong</creator><creator>Shi, Pengling</creator><creator>Chen, Jun</creator><creator>Ni, Leyi</creator><creator>Xie, Ping</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160401</creationdate><title>Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies</title><author>Wang, Wenjing ; Shen, Hong ; Shi, Pengling ; Chen, Jun ; Ni, Leyi ; Xie, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-806aea9d8cf5af4aae2eb9d41026d5a916e03eeb05c01499cb1f49d965e27ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerogenes</topic><topic>Aeromonas veronii</topic><topic>Bacillus cereus</topic><topic>Bacteria</topic><topic>benzoic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Brackish</topic><topic>coculture</topic><topic>Ecology</topic><topic>Enterobacter aerogenes</topic><topic>Eutrophic lakes</topic><topic>Eutrophication</topic><topic>Exiguobacterium</topic><topic>Exiguobacterium acetylicum</topic><topic>Filtrate</topic><topic>filtrates</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gas chromatography</topic><topic>gas chromatography-mass spectrometry</topic><topic>lakes</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Microcystis</topic><topic>Microcystis aeruginosa</topic><topic>Microcystis wesenbergii</topic><topic>morphs</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>polysaccharides</topic><topic>Saccharides</topic><topic>Shewanella putrefaciens</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenjing</creatorcontrib><creatorcontrib>Shen, Hong</creatorcontrib><creatorcontrib>Shi, Pengling</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Ni, Leyi</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenjing</au><au>Shen, Hong</au><au>Shi, Pengling</au><au>Chen, Jun</au><au>Ni, Leyi</au><au>Xie, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>28</volume><issue>2</issue><spage>1111</spage><epage>1123</epage><pages>1111-1123</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10811-015-0659-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-8971
ispartof Journal of applied phycology, 2016-04, Vol.28 (2), p.1111-1123
issn 0921-8971
1573-5176
language eng
recordid cdi_proquest_miscellaneous_1776659199
source Springer Nature Link eJournals
subjects Aerogenes
Aeromonas veronii
Bacillus cereus
Bacteria
benzoic acid
Biomedical and Life Sciences
Brackish
coculture
Ecology
Enterobacter aerogenes
Eutrophic lakes
Eutrophication
Exiguobacterium
Exiguobacterium acetylicum
Filtrate
filtrates
Freshwater & Marine Ecology
Gas chromatography
gas chromatography-mass spectrometry
lakes
Life Sciences
Mass spectrometry
Microcystis
Microcystis aeruginosa
Microcystis wesenbergii
morphs
Plant Physiology
Plant Sciences
polysaccharides
Saccharides
Shewanella putrefaciens
Water analysis
title Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20for%20the%20role%20of%20heterotrophic%20bacteria%20in%20the%20formation%20of%20Microcystis%20colonies&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Wang,%20Wenjing&rft.date=2016-04-01&rft.volume=28&rft.issue=2&rft.spage=1111&rft.epage=1123&rft.pages=1111-1123&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-015-0659-5&rft_dat=%3Cproquest_cross%3E1776659199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772536645&rft_id=info:pmid/&rfr_iscdi=true