Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies

Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied phycology 2016-04, Vol.28 (2), p.1111-1123
Hauptverfasser: Wang, Wenjing, Shen, Hong, Shi, Pengling, Chen, Jun, Ni, Leyi, Xie, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microcystis, a genus of cyanobacteria that is dominant in eutrophic lakes, occurs mainly as colonial morphs under natural conditions but as single cells in laboratory cultures. Recent studies have suggested that Microcystis–bacteria interactions significantly influence Microcystis morphology, but the underlying mechanism remains unclear. In this study, a total of 48 strains of heterotrophic bacteria were purified from Microcystis mucilage. Five bacteria, Aeromonas veronii, Enterobacter aerogenes, Exiguobacterium acetylicum, Bacillus cereus and Shewanella putrefaciens, can induce unicellular Microcystis to form colonies. Heterotrophic bacteria stimulated Microcystis growth and induced the production of extracellular polymeric substances in coculture treatments. Extracellular polymeric substances, such as extracellular polysaccharides (EPS), were responsible for the mucilage formation in colonial Microcystis. We analysed extracellular metabolic compounds produced by Microcystis aeruginosa and Microcystis wesenbergii using gas chromatography mass spectrometry. Filtrate extracts from coculture treatments indicated that some compounds, such as 2-dodecen-1-yl(-) succinic anhydride and benzoic acid, 2,3-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester, might play a significant role in colonial M. aeruginosa or M. wesenbergii formation. Our data suggested that the interaction of Microcystis and heterotrophic bacteria was crucial for the formation of Microcystis colony and outbreak of Microcystis blooms.
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-015-0659-5