Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor
In-season site-specific nitrogen (N) management is a promising strategy to improve crop N use efficiency and reduce risks of environmental contamination. To successfully implement such precision management strategies, it is important to accurately estimate yield potential without additional topdress...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2016-04, Vol.17 (2), p.136-154 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In-season site-specific nitrogen (N) management is a promising strategy to improve crop N use efficiency and reduce risks of environmental contamination. To successfully implement such precision management strategies, it is important to accurately estimate yield potential without additional topdressing N application (YPâ) as well as precisely assess the responsiveness to additional N application (RI) during the growing season. Previous research has mainly used normalized difference vegetation index (NDVI) or ratio vegetation index (RVI) obtained from GreenSeeker active crop canopy sensor with two fixed bands in red and near-infrared (NIR) spectrums to estimate these two parameters. The development of three-band Crop Circle active sensor provides a potential to improve in-season estimation of YPâ and RI. The objectives of this study were twofold: (1) identify important vegetation indices obtained from Crop Circle ACS-470 sensor for estimating rice YPâ and RI; and (2) evaluate their potential improvements over GreenSeeker NDVI and RVI. Four site-years of field N rate experiments were conducted in 2012 and 2013 at the Jiansanjiang Experiment Station of China Agricultural University located in Northeast China. The GreenSeeker and Crop Circle ACS-470 active canopy sensor with green, red edge, and NIR bands were used to collect rice canopy reflectance data at different key growth stages. The results indicated that both the GreenSeeker (best R² = 0.66 and 0.70, respectively) and Crop Circle (best R² = 0.71 and 0.77, respectively) sensors worked well for estimating YPâ and RI at the stem elongation stage. At the booting stage, Crop Circle red edge optimized soil adjusted vegetation index (REOSAVI, R² = 0.82) and green ratio vegetation index (R² = 0.73) explained 26 and 22 % more variability in YPâ and RI, respectively, than GreenSeeker NDVI or RVI. At the heading stage, the GreenSeeker sensor indices became saturated and consequently could not be used for YPâ or RI estimation, while Crop Circle REOSAVI and normalized green index could still explain more than 70 % of YPâ and RI variability. It is concluded that both sensors performed similarly at the stem elongation stage, but significantly better results were obtained by the Crop Circle sensor at the booting and heading stages. Furthermore, the results revealed that Crop Circle green band-based vegetation indices performed well for RI estimation while the red edge-based vegetation indic |
---|---|
ISSN: | 1385-2256 1573-1618 |
DOI: | 10.1007/s11119-015-9412-y |