Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica

Nitrite is a central intermediate in the marine nitrogen cycle and represents a critical juncture where nitrogen can be reduced to the less bioavailable N2 gas or oxidized to nitrate and retained in a more bioavailable form. We present an analysis of rates of microbial nitrogen transformations in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2015-12, Vol.29 (12), p.2061-2081
Hauptverfasser: Buchwald, Carolyn, Santoro, Alyson E., Stanley, Rachel H. R., Casciotti, Karen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrite is a central intermediate in the marine nitrogen cycle and represents a critical juncture where nitrogen can be reduced to the less bioavailable N2 gas or oxidized to nitrate and retained in a more bioavailable form. We present an analysis of rates of microbial nitrogen transformations in the oxygen deficient zone (ODZ) within the eastern tropical North Pacific Ocean (ETNP). We determined rates using a novel one‐dimensional model using the distribution of nitrite and nitrate concentrations, along with their natural abundance nitrogen (N) and oxygen (O) isotope profiles. We predict rate profiles for nitrate reduction, nitrite reduction, and nitrite oxidation throughout the ODZ, as well as the contributions of anammox to nitrite reduction and nitrite oxidation. Nitrate reduction occurs at a maximum rate of 25 nM d−1 at the top of the ODZ, at the same depth as the maximum rate of nitrite reduction, 15 nM d−1. Nitrite oxidation occurs at maximum rates of 10 nM d−1 above the secondary nitrite maximum, but also in the secondary nitrite maximum, within the ODZ. Anammox contributes to nitrite oxidation within the ODZ but cannot account for all of it. Nitrite oxidation within the ODZ that is not through anammox is also supported by microbial gene abundance profiles. Our results suggest the presence of nitrite oxidation within the ETNP ODZ, with implications for the distribution and physiology of marine nitrite‐oxidizing bacteria, and for total nitrogen loss in the largest marine ODZ. Key Points Isotope tracers and concentrations can predict N cycling rates Nitrate isotope profiles suggest a nitrate sink by denitrification Nitrite isotopes predict that up to 50% of nitrite is reoxidized
ISSN:0886-6236
1944-9224
DOI:10.1002/2015GB005187