Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich's ataxia
ABSTRACT Introduction Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage...
Gespeichert in:
Veröffentlicht in: | Movement disorders 2016-01, Vol.31 (1), p.70-78 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Introduction
Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage in Friedreich's ataxia
Methods
We enrolled 31 patients and 40 controls, which were evaluated at baseline and after 1 and 2 years. To assess gray matter, we employed voxel‐based morphometry and cortical thickness measurements. White matter was evaluated using diffusion tensor imaging. Statistical analyses were both cross‐sectional and longitudinal (corrected for multiple comparisons).
Results
Group comparison between patients and controls revealed widespread macrostructural differences at baseline: gray matter atrophy in the dentate nuclei, brainstem, and precentral gyri; and white matter atrophy in the cerebellum and superior cerebellar peduncles, brainstem, and periventricular areas. We did not identify any longitudinal volumetric change over time. There were extensive microstructural alterations, including superior cerebellar peduncles, corpus callosum, and pyramidal tracts. Longitudinal analyses identified progressive microstructural abnormalities at the corpus callosum, pyramidal tracts, and superior cerebellar peduncles after 1 year of follow‐up.
Conclusion
Patients with Friedreich's ataxia present more widespread gray and white matter damage than previously reported, including not only infratentorial areas, but also supratentorial structures. Furthermore, patients with Friedreich's ataxia have progressive microstructural abnormalities amenable to detection in a short‐term follow‐up. © 2015 International Parkinson and Movement Disorder Society |
---|---|
ISSN: | 0885-3185 1531-8257 |
DOI: | 10.1002/mds.26436 |