Sulfur-doping achieves efficient oxygen reduction in pyrolyzed zeolitic imidazolate frameworks

We report the first synthesis of sulfurated porous carbon materials with well-defined morphologies and uniform N/S distributions via pyrolysis of zeolitic imidazolate frameworks loaded with sulfur-containing molecules. The optimized sulfurated catalyst demonstrates excellent electrocatalytic activit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (12), p.4457-4463
Hauptverfasser: Zhang, Chao, An, Bing, Yang, Ling, Wu, Binbin, Shi, Wei, Wang, Yu-Cheng, Long, La-Sheng, Wang, Cheng, Lin, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the first synthesis of sulfurated porous carbon materials with well-defined morphologies and uniform N/S distributions via pyrolysis of zeolitic imidazolate frameworks loaded with sulfur-containing molecules. The optimized sulfurated catalyst demonstrates excellent electrocatalytic activity for the oxygen reduction reaction (ORR) in both acid and alkaline media. The sulfurization process under optimized conditions can lower the ORR over-potential by ca. 170 mV at 3 mA cm −2 , giving a non-precious metal catalyst with an onset ORR potential of 0.90 V ( vs. RHE, similarly hereinafter)/half-wave potential of 0.78 V in 0.1 M HClO 4 and an onset ORR potential of 0.98 V/half-wave potential of 0.88 V in 0.1 M KOH. Furthermore, the S-doped porous carbon materials perform better in the long-term durability test than the non-S-doped samples and standard commercially available Pt/C. We also discuss different sulfuration methods for the ZIF system, morphologies of pyrolyzed samples, and catalytically active sites. Sulfurated carbon catalysts from pyrolysis of zeolitic imidazolate frameworks demonstrate oxygen reduction activity surpassing commercially available Pt/C in alkaline media.
ISSN:2050-7488
2050-7496
DOI:10.1039/c6ta00768f