Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2015-12, Vol.10 (12), p.124019
Hauptverfasser: de Faria, Felipe A M, Jaramillo, Paulina, Sawakuchi, Henrique O, Richey, Jeffrey E, Barros, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 124019
container_title Environmental research letters
container_volume 10
creator de Faria, Felipe A M
Jaramillo, Paulina
Sawakuchi, Henrique O
Richey, Jeffrey E
Barros, Nathan
description Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models' uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.
doi_str_mv 10.1088/1748-9326/10/12/124019
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1776643546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_69a7924cd1a14e12a30e37d13fc8d025</doaj_id><sourcerecordid>2550048104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bb1bca97431e8ae401f4a2961aa3fd4e0d1d132f889f5f585e46202738258f0b3</originalsourceid><addsrcrecordid>eNqFUV1r3DAQNCGFXNL8hWDoS1-up9WX5ccQ0jQQCJT2WezJqzsdPusq2YXk10cXlzT0pSBYsTsz7OxU1RWwL8CMWUEjzbIVXK-ArYCXJxm0J9XibXD67n9Wnee8Y0xJ1ZhF9f02j2GPYxg29SYRDds4Zao3mGvah5xDHHLtU9zXfhqnRPX1Hp_jEHCot09ditSTG1NwdaJM6XcMKX-sPnjsM13-qRfVz6-3P26-LR8e7-5vrh-WTnE9LtdrWDtsGymADFLZ2UvkrQZE4TtJrIMOBPfGtF55ZRRJzRlvhOHKeLYWF9X9rNtF3NlDKjbSk40Y7Gsjpo3FNAbXk9UtNi2XrgMEScBRMBJNkffOdIyrovV51jqk-GuiPNpi3lHf40DlIBaaRmsplNQF-ukf6C5OaShOLVeKMWmAyYLSM8qlmHMi_7YgMHuMzR4TscdEXjvczrEVIp-JIR7-Kv-H9ALFWpkj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550048104</pqid></control><display><type>article</type><title>Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>de Faria, Felipe A M ; Jaramillo, Paulina ; Sawakuchi, Henrique O ; Richey, Jeffrey E ; Barros, Nathan</creator><creatorcontrib>de Faria, Felipe A M ; Jaramillo, Paulina ; Sawakuchi, Henrique O ; Richey, Jeffrey E ; Barros, Nathan</creatorcontrib><description>Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models' uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/10/12/124019</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amazon ; Atmospheric models ; Carbon ; Carbon dioxide ; Electric power demand ; Electricity ; emission factor ; Emissions ; Greenhouse effect ; greenhouse gas emissions ; Greenhouse gases ; Hydroelectric plants ; Hydroelectric power ; hydropower ; Monte Carlo simulation ; Prediction models ; Reservoirs ; River basins ; Rivers ; Tropical forests ; Uncertainty</subject><ispartof>Environmental research letters, 2015-12, Vol.10 (12), p.124019</ispartof><rights>2015 IOP Publishing Ltd</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bb1bca97431e8ae401f4a2961aa3fd4e0d1d132f889f5f585e46202738258f0b3</citedby><cites>FETCH-LOGICAL-c526t-bb1bca97431e8ae401f4a2961aa3fd4e0d1d132f889f5f585e46202738258f0b3</cites><orcidid>0000-0002-4214-1106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/10/12/124019/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>de Faria, Felipe A M</creatorcontrib><creatorcontrib>Jaramillo, Paulina</creatorcontrib><creatorcontrib>Sawakuchi, Henrique O</creatorcontrib><creatorcontrib>Richey, Jeffrey E</creatorcontrib><creatorcontrib>Barros, Nathan</creatorcontrib><title>Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models' uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.</description><subject>Amazon</subject><subject>Atmospheric models</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Electric power demand</subject><subject>Electricity</subject><subject>emission factor</subject><subject>Emissions</subject><subject>Greenhouse effect</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Hydroelectric plants</subject><subject>Hydroelectric power</subject><subject>hydropower</subject><subject>Monte Carlo simulation</subject><subject>Prediction models</subject><subject>Reservoirs</subject><subject>River basins</subject><subject>Rivers</subject><subject>Tropical forests</subject><subject>Uncertainty</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFUV1r3DAQNCGFXNL8hWDoS1-up9WX5ccQ0jQQCJT2WezJqzsdPusq2YXk10cXlzT0pSBYsTsz7OxU1RWwL8CMWUEjzbIVXK-ArYCXJxm0J9XibXD67n9Wnee8Y0xJ1ZhF9f02j2GPYxg29SYRDds4Zao3mGvah5xDHHLtU9zXfhqnRPX1Hp_jEHCot09ditSTG1NwdaJM6XcMKX-sPnjsM13-qRfVz6-3P26-LR8e7-5vrh-WTnE9LtdrWDtsGymADFLZ2UvkrQZE4TtJrIMOBPfGtF55ZRRJzRlvhOHKeLYWF9X9rNtF3NlDKjbSk40Y7Gsjpo3FNAbXk9UtNi2XrgMEScBRMBJNkffOdIyrovV51jqk-GuiPNpi3lHf40DlIBaaRmsplNQF-ukf6C5OaShOLVeKMWmAyYLSM8qlmHMi_7YgMHuMzR4TscdEXjvczrEVIp-JIR7-Kv-H9ALFWpkj</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>de Faria, Felipe A M</creator><creator>Jaramillo, Paulina</creator><creator>Sawakuchi, Henrique O</creator><creator>Richey, Jeffrey E</creator><creator>Barros, Nathan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4214-1106</orcidid></search><sort><creationdate>20151201</creationdate><title>Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs</title><author>de Faria, Felipe A M ; Jaramillo, Paulina ; Sawakuchi, Henrique O ; Richey, Jeffrey E ; Barros, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bb1bca97431e8ae401f4a2961aa3fd4e0d1d132f889f5f585e46202738258f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amazon</topic><topic>Atmospheric models</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Electric power demand</topic><topic>Electricity</topic><topic>emission factor</topic><topic>Emissions</topic><topic>Greenhouse effect</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Hydroelectric plants</topic><topic>Hydroelectric power</topic><topic>hydropower</topic><topic>Monte Carlo simulation</topic><topic>Prediction models</topic><topic>Reservoirs</topic><topic>River basins</topic><topic>Rivers</topic><topic>Tropical forests</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Faria, Felipe A M</creatorcontrib><creatorcontrib>Jaramillo, Paulina</creatorcontrib><creatorcontrib>Sawakuchi, Henrique O</creatorcontrib><creatorcontrib>Richey, Jeffrey E</creatorcontrib><creatorcontrib>Barros, Nathan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Faria, Felipe A M</au><au>Jaramillo, Paulina</au><au>Sawakuchi, Henrique O</au><au>Richey, Jeffrey E</au><au>Barros, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>124019</spage><pages>124019-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models' uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/10/12/124019</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4214-1106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2015-12, Vol.10 (12), p.124019
issn 1748-9326
1748-9326
language eng
recordid cdi_proquest_miscellaneous_1776643546
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Amazon
Atmospheric models
Carbon
Carbon dioxide
Electric power demand
Electricity
emission factor
Emissions
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Hydroelectric plants
Hydroelectric power
hydropower
Monte Carlo simulation
Prediction models
Reservoirs
River basins
Rivers
Tropical forests
Uncertainty
title Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20greenhouse%20gas%20emissions%20from%20future%20Amazonian%20hydroelectric%20reservoirs&rft.jtitle=Environmental%20research%20letters&rft.au=de%20Faria,%20Felipe%20A%20M&rft.date=2015-12-01&rft.volume=10&rft.issue=12&rft.spage=124019&rft.pages=124019-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/10/12/124019&rft_dat=%3Cproquest_iop_j%3E2550048104%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550048104&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_69a7924cd1a14e12a30e37d13fc8d025&rfr_iscdi=true