The systemic effects of sclerostin overexpression using ΦC31 integrase in mice

Sclerostin, encoded by the Sost gene, is mainly produced by osteocytes in bone and antagonizes the Wnt/β-catenin signaling pathway, which is a requisite for bone formation. Currently, human anti-sclerostin antibodies are being tested in phase III clinical trials. In addition, serum sclerostin levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2016-04, Vol.472 (3), p.471-476
Hauptverfasser: Zhang, Dongdong, Park, Bo Mi, Kang, Myengmo, Nam, HeeJin, Kim, Eun Jin, Bae, ChuHyun, Lim, Sung Kil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sclerostin, encoded by the Sost gene, is mainly produced by osteocytes in bone and antagonizes the Wnt/β-catenin signaling pathway, which is a requisite for bone formation. Currently, human anti-sclerostin antibodies are being tested in phase III clinical trials. In addition, serum sclerostin levels are reported to be associated with bone mineral density and fracture risk in normal individuals; however, the correlation between serum sclerostin and bone mass remains controversial. To study the effects of the continuous exposure of exogenous sclerostin on bone, a ΦC31 integrase system, which has the characteristics of site-specificity and efficiency, was applied for the delivery of the Sost gene in this study. We injected Sost-attB plasmid with or without ΦC31 integrase plasmid into the mouse tail vein using a hydrodynamic-based method. The site-specific integration of the Sost gene into the mouse genome was confirmed by examining a pseudo-attP site on the hepatic genomic DNA. Sclerostin was expressed in the hepatocytes, secreted into the blood flow, and maintained at high concentrations in the mice with both Sost-attB plasmid and ΦC31 integrase plasmid injections, which was observed by serial measurement. Moreover, the mice with long-term high levels of serum sclerostin showed trabecular bone loss on micro-CT analysis. Peripheral B cell populations were not affected. Our results suggested that sclerostin could be expressed in the liver and sustained successfully at high levels in the blood by using the ΦC31 integrase system, leading to trabecular bone loss. These findings may help to further ascertain the effects of sclerostin introduced exogenously on the skeleton. •Exogenous Sost was successfully integrated into mouse genome using ΦC31 integrase.•Serum sclerostin was maintained at high levels.•Trabecular bone loss was detected after 15 week-expression of Sost.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2016.01.178