Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer's Disease

The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Aβ amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-12, Vol.279 (50), p.51958-51964
Hauptverfasser: Treiber, Carina, Simons, Andreas, Strauss, Markus, Hafner, Mathias, Cappai, Roberto, Bayer, Thomas A, Multhaup, Gerd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Aβ amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Aβ plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M407410200