Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration

Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2015-09, Vol.213, p.112-119
Hauptverfasser: Horiguchi, Michiko, Oiso, Yuki, Sakai, Hitomi, Motomura, Tomoki, Yamashita, Chikamasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin–eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2015.07.004