Transcriptional regulation of the human osteopontin promoter : functional analysis and DNA-protein interactions

Synthesis of cell attachment proteins and cytokines, such as osteopontin (OPN), can promote tumor cell remodeling of the extracellular matrix into an environment that promotes tumor cell attachment and migration. We investigated the transcriptional regulation of OPN in the U-251MG and U-87MG human m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2000-11, Vol.19 (50), p.5801-5809
Hauptverfasser: DONGYAN WANG, YAMAMOTO, Shunsuke, HIJIYA, Naoki, BENVENISTE, Etty N, GLADSON, Candece L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of cell attachment proteins and cytokines, such as osteopontin (OPN), can promote tumor cell remodeling of the extracellular matrix into an environment that promotes tumor cell attachment and migration. We investigated the transcriptional regulation of OPN in the U-251MG and U-87MG human malignant astrocytoma cell lines. Deletion and mutagenesis analyses of the OPN promoter region identified a proximal promoter element (-24 to -94 relative to the transcription initiation site) that is essential for maintaining high levels of OPN expression in the tumor cells. This element, designated RE-1, consists of two cis-acting elements, RE-1a (-55 to -86) and RE-1b (-22 to -45), which act synergistically to regulate the activity of the OPN promoter. Gel shift assays using nuclear extracts of U-251MG cells demonstrated that RE-1a contains binding sites for transcription factors Sp1, the glucocorticoid receptor, and the E-box-binding factors, whereas RE-1b contains a binding site for the octamer motif-binding protein (OCT-1/OCT-2). Inclusion of antibodies directed toward Myc and OCT-1 in the gel shift assays indicated that Myc and OCT-1 participate in forming DNA-protein complexes on the RE-1a and RE-1b elements, respectively. Our results identify two previously unrecognized elements in the OPN promoter that act synergistically to promote upregulation of OPN synthesis by tumor cells but are regulated by different transcription factors.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1203917