A hydrodynamic view of the first-passage folding of Trp-cage miniprotein

We study folding of Trp-cage miniprotein in the conditions when the native state of the protein is stable and unfolding events are improbable, which corresponds to physiological conditions. Using molecular dynamics simulations with an implicit solvent model, an ensemble of folding trajectories from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2016-04, Vol.45 (3), p.229-243
Hauptverfasser: Andryushchenko, Vladimir A., Chekmarev, Sergei F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study folding of Trp-cage miniprotein in the conditions when the native state of the protein is stable and unfolding events are improbable, which corresponds to physiological conditions. Using molecular dynamics simulations with an implicit solvent model, an ensemble of folding trajectories from unfolded (practically extended) states of the protein to the native state was generated. To get insight into the folding kinetics, the free energy surface and kinetic network projected on this surface were constructed. This, “conventional” analysis of the folding reaction was followed by a recently proposed hydrodynamic description of protein folding (Chekmarev et al. in Phys Rev Lett 100(1):018107, 2008 ), in which the process of the first-passage folding is viewed as a stationary flow of a folding “fluid” from the unfolded to native state. This approach is conceptually different from the previously used approaches and thus allows an alternative view of the folding dynamics and kinetics of Trp-cage, the conclusions about which are very diverse. In agreement with most previous studies, we observed two characteristic folding pathways: in one pathway (I), the collapse of the hydrophobic core precedes the formation of the α -helix, and in the other pathway (II), these events occur in the reverse order. We found that although pathway II is complicated by a repeated partial protein unfolding, it contributes to the total folding flow as little as ≈10 %, so that the folding kinetics remain essentially single-exponential.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-015-1089-7