Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis

An elongated glutamine tract in mutant huntingtin initiates Huntington's disease (HD) pathogenesis via a novel structural property that displays neuronal selectivity, glutamine progressivity and dominance over the normal protein based on genetic criteria. As this mechanism is likely to involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2000-09, Vol.9 (14), p.2175-2182
Hauptverfasser: PASSANI, L. A, BEDFORD, M. T, FABER, P. W, MCGINNIS, K. M, SHARP, A. H, GUSELLA, J. F, VONSATTEL, J.-P, MACDONALD, M. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An elongated glutamine tract in mutant huntingtin initiates Huntington's disease (HD) pathogenesis via a novel structural property that displays neuronal selectivity, glutamine progressivity and dominance over the normal protein based on genetic criteria. As this mechanism is likely to involve a deleterious protein interaction, we have assessed the major class of huntingtin interactors comprising three WW domain proteins. These are revealed to be related spliceosome proteins (HYPA/FBP-11 and HYPC) and a transcription factor (HYPB) that implicate huntingtin in mRNA biogenesis. In HD post-mortem brain, specific antibody reagents detect each partner in HD target neurons, in association with disease-related N-terminal morphologic deposits but not with filter trapped insoluble-aggregate. Glutathione S:-transferase partner 'pull-down' assays reveal soluble, aberrantly migrating, forms of full-length mutant huntingtin specific to HD target tissue. Importantly, these novel mutant species exhibit exaggerated WW domain binding that abrogates partner association with other huntingtin isoforms. Thus, each WW domain partner's association with huntingtin fulfills HD genetic criteria, supporting a direct role in pathogenesis. Our findings indicate that modification of mutant huntingtin in target neurons may promote an abnormal interaction with one, or all, of huntingtin's WW domain partners, perhaps altering ribonucleoprotein function with toxic consequences.
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/9.14.2175