Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons

Processing multiple sensory modalities is critical for executing complex behaviors. This study finds that single cerebellar granule cells integrate inputs from both vestibular and visual input pathways, each exhibiting characteristic synaptic strengths and plasticities. These are translated into out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2015-05, Vol.18 (5), p.718-727
Hauptverfasser: Chabrol, François P, Arenz, Alexander, Wiechert, Martin T, Margrie, Troy W, DiGregorio, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Processing multiple sensory modalities is critical for executing complex behaviors. This study finds that single cerebellar granule cells integrate inputs from both vestibular and visual input pathways, each exhibiting characteristic synaptic strengths and plasticities. These are translated into output dynamics that enhance the network's representation of complex sensory contexts. The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses in the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. Most GCs receive inputs from different modalities, which, when coactivated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory inputs by single GCs, thereby enriching sensory representation and facilitating pattern separation.
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.3974