Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis

BACKGROUND: Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nutrition 2016-02, Vol.55 (1), p.197-206
Hauptverfasser: Moratalla, Alba, Gómez-Hurtado, Isabel, Moya-Pérez, Ángela, Zapater, Pedro, Peiró, Gloria, González-Navajas, José M, Gómez Del Pulgar, Eva Maria, Such, José, Sanz, Yolanda, Francés, Rubén
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 and intestinal lymphocytes in mice with cirrhosis. ANIMALS AND METHODS: Cirrhosis was induced by intragastrical administration of carbon tetrachloride in Balb/C mice. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10⁷, 10⁹ or 10¹⁰ cfu/daily) or placebo. Chemokine receptor and cytokine expression were evaluated in intestinal lymphocytes. Gut permeability was studied by FITC-LPS recovery in vivo. Luminal antigens, inflammation and functional markers were evaluated in liver samples. RESULTS: Bifidobacterium pseudocatenulatum CECT7765 decreased the expression of pro-inflammatory chemokine receptors CCR6, CCR9, CXCR3 and CXCR6 in intestinal lymphocytes from cirrhotic mice in a concentration-dependent manner. The bifidobacterial strain induced a shift towards an anti-inflammatory cytokine profile in this cell subset. B. pseudocatenulatum CECT7765-induced inflammatory modulation was TLR2-mediated, as in vitro TLR2 blockade inhibited the reduction of TNF-alpha and its receptors and the increase of IL-10 and IL-10 receptor secretion. The recovery rate of administered fluorescence-labelled endotoxin was significantly and dose-dependently lowered with the bifidobacterial strain. The reduced intestinal permeability was associated with a decreased burden of bacterial antigens in the liver of mice treated with B. pseudocatenulatum CECT7765. Liver function and inflammation were improved with the use of the bifidobacterial strain at the highest dose tested (10¹⁰ cfu). CONCLUSION: Bifidobacterium pseudocatenulatum CECT7765 improves gut homeostasis and prevents gut-derived complications in experimental chronic liver disease.
ISSN:1436-6207
1436-6215
DOI:10.1007/s00394-015-0837-x