The Role of α,β-Dicarbonyl Compounds in the Toxicity of Short Chain Sugars
The extent to which sugars serve as targets for superoxide was examined using glycolaldehyde as the simplest sugar and using superoxide dismutase (SOD)-replete and SOD-null strains growing under aerobic and anaerobic conditions. Glycolaldehyde was more toxic to the SOD-null strain than to its SOD-re...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-11, Vol.275 (45), p.34853-34857 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extent to which sugars serve as targets for superoxide was examined using glycolaldehyde as the simplest sugar and using superoxide dismutase (SOD)-replete and SOD-null strains growing under aerobic and anaerobic conditions. Glycolaldehyde was more toxic to the SOD-null strain than to its SOD-replete parent, and this differential effect was oxygen-dependent. The product, glyoxal, could be trapped in the medium by 1,2-diaminobenzene and assayed as quinoxaline. The SOD-null strain produced more glyoxal and eliminated it more slowly than the SOD-replete parent strain. Glyoxal was ∼10 times more toxic than glycolaldehyde and was more toxic to the SOD-null strain than to the parental strain. 1,2-Diaminobenzene protected against the toxicity of glycolaldehyde. TheseEscherichia coli strains contained the glutathione-dependent glyoxalases I and II, as well as the glutathione-independent glyoxalase III. Of these enzymes, glyoxalase III was most abundant, and it was inactivated within the aerobic SOD-null strain and also in extracts when exposed to the flux of superoxide and hydrogen peroxide imposed by the xanthine oxidase reaction. Thus, it appears that short chain sugars are oxidized by superoxide yielding toxic dicarbonyls. Moreover, the defensive glyoxalase III is also inactivated by the oxidative stress imposed by the lack of SOD, thereby exacerbating the deleterious effect of sugar oxidation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M005536200 |