Multiple Mechanisms Underlie Neurotoxicity by Different Types of Alzheimer's Disease Mutations of Amyloid Precursor Protein
We examined a neuronal cell system in which single-cell expression of either familial Alzheimer's disease (FAD) gene V642I-APP or K595N/M596L-APP (NL-APP) in an inducible plasmid was controlled without affecting transfection efficiency. This system revealed that (i) low expression of both mutan...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-11, Vol.275 (44), p.34541-34551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examined a neuronal cell system in which single-cell expression of either familial Alzheimer's disease (FAD) gene V642I-APP or K595N/M596L-APP (NL-APP) in an inducible plasmid was controlled without affecting transfection efficiency. This system revealed that (i) low expression of both mutants exerted toxicity sensitive to both Ac-DEVD-CHO (DEVD) and glutathione ethyl ester (GEE), whereas wild-type APP (wtAPP) only at higher expression levels caused GEE/DEVD-resistant death to lesser degrees; (ii) toxicity by the V642I mutation was entirely GEE/DEVD sensitive; and (iii) toxicity by higher expression of NL-APP was GEE/DEVD resistant. The GEE/DEVD-sensitive death was sensitive to pertussis toxin and was due to Go-interacting His657-Lys676 domain. The GEE/DEVD-resistant death was due to C-terminal Met677-Asn695. APP mutants lacking either domain unraveled elaborate intracellular cross-talk between these domains. E618Q-APP, responsible for non-AD type of a human disease, only exerted GEE/DEVD-resistant death at higher expression. Therefore, (i) different FAD mutations in APP cause neuronal cell death through different cytoplasmic domains via different sets of mechanisms; (ii) expression levels of FAD genes are critical in activating specific death mechanisms; and (iii) toxicity by low expression of both mutants most likely reflects the pathogenetic mechanism of FAD. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M005332200 |