Neutral-Type One-Dimensional Mixed-Valence Halogen-Bridged Platinum Chain Complexes with Large Charge-Transfer Band Gaps

One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2016-03, Vol.55 (5), p.2620-2626
Hauptverfasser: Otake, Ken-ichi, Otsubo, Kazuya, Sugimoto, Kunihisa, Fujiwara, Akihiko, Kitagawa, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designable structures and electronic states. Here, we report the syntheses, structures, and electronic properties of three kinds of novel neutral MX-chain complexes. The crystal structures consist of 1D chains of Pt–X repeating units with (1R,2R)-(−)-diaminocychlohexane and CN– in-plane ligands. Because of the absence of a counteranion, the neutral MX chains have short interchain distances, so that strong interchain electronic interaction is expected. Resonance Raman spectra and diffuse-reflectance UV–vis spectra indicate that their electronic states are mixed-valence states (charge-density-wave state: Pt2+···X–Pt4+–X···Pt2+···X–Pt4+–X···). In addition, the relationship between the intervalence charge-transfer (IVCT) band gap and the degree of distortion of the 1D chain shows that the neutral MX chains have a larger IVCT band gap than that of cationic MX-chain complexes. These results provide new insight into the physical and electronic properties of 1D chain compounds.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.5b02980