Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures
Chemical space networks (CSNs) have recently been introduced as an alternative to other coordinate-free and coordinate-based chemical space representations. In CSNs, nodes represent compounds and edges pairwise similarity relationships. In addition, nodes are annotated with compound property informa...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2015-10, Vol.29 (10), p.937-950 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical space networks (CSNs) have recently been introduced as an alternative to other coordinate-free and coordinate-based chemical space representations. In CSNs, nodes represent compounds and edges pairwise similarity relationships. In addition, nodes are annotated with compound property information such as biological activity. CSNs have been applied to view biologically relevant chemical space in comparison to random chemical space samples and found to display well-resolved topologies at low edge density levels. The way in which molecular similarity relationships are assessed is an important determinant of CSN topology. Previous CSN versions were based on numerical similarity functions or the assessment of substructure-based similarity. Herein, we report a new CSN design that is based upon combined numerical and substructure similarity evaluation. This has been facilitated by calculating numerical similarity values on the basis of maximum common substructures (MCSs) of compounds, leading to the introduction of MCS-based CSNs (MCS-CSNs). This CSN design combines advantages of continuous numerical similarity functions with a robust and chemically intuitive substructure-based assessment. Compared to earlier version of CSNs, MCS-CSNs are characterized by a further improved organization of local compound communities as exemplified by the delineation of drug-like subspaces in regions of biologically relevant chemical space. |
---|---|
ISSN: | 0920-654X 1573-4951 |
DOI: | 10.1007/s10822-015-9872-1 |