Contaminant identification during laser cleaning of thermal barrier coatings

Laser ablation has previously been demonstrated as a technique for removal of contaminants from engine-run thermal barrier coatings. In this paper, laser-induced breakdown spectroscopy (LIBS) was applied during ablation cleaning to quantify the contaminant concentrations. Calibration LIBS spectra we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2015-05, Vol.270, p.86-94
Hauptverfasser: Kim, Hyung N., Hawron, Martin P., Hassan, Waled, Jordan, Eric H., Renfro, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser ablation has previously been demonstrated as a technique for removal of contaminants from engine-run thermal barrier coatings. In this paper, laser-induced breakdown spectroscopy (LIBS) was applied during ablation cleaning to quantify the contaminant concentrations. Calibration LIBS spectra were acquired from pressed powdered samples of calcium oxide, magnesium oxide, alumina, and silica, which are major components of surface contaminants (referred to as CMAS) in gas turbine engines. Proper orthogonal decomposition (POD) was applied to the calibration spectra from the CMAS components to generate an orthogonal mode set for reducing measured data. Since these POD modes can represent mixed compositions, an approach was derived to separate the modes into chemically unique spectra while retaining their orthogonal and normal properties. Results using these renormalized modes show that the calcium and magnesium oxide composition in CMAS can be generally quantified. Quantification for alumina and silica is limited due to their inherently lower signal. Measurements were applied to turbine blades run in a gas turbine engine to examine the distribution of CMAS contaminants across the surface. Results showed the CMAS contaminants on the blades were abundant in calcium and magnesium oxides, which represented over 85% of the LIBS spectra. Approximately 14% of the measured CMAS contaminant spectra were residual, representing noise and unidentified species. •Laser-induced breakdown used during cleaning to identify contaminants on TBCs.•Proper orthogonal decomposition with mixed modes used to isolate compounds.•Calcium and magnesium oxides contamination quantified for engine run TBCs.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2015.03.017