Collision-Free Guidance Control of Small Unmanned Helicopter Using Nonlinear Model Predictive Control
In this study, our aim is to realize collision-free guidance control for a small unmanned helicopter. The simultaneous flight of multiple small unmanned helicopters has recently attracted considerable attention for practical operation because of the high efficiency and fault tolerance capability. Co...
Gespeichert in:
Veröffentlicht in: | SICE Journal of Control, Measurement, and System Integration Measurement, and System Integration, 2014, Vol.7(6), pp.347-355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, our aim is to realize collision-free guidance control for a small unmanned helicopter. The simultaneous flight of multiple small unmanned helicopters has recently attracted considerable attention for practical operation because of the high efficiency and fault tolerance capability. Collision avoidance should be considered in the guidance system of small helicopters to realize simultaneous flight. The authors adopted nonlinear model predictive control (NMPC) to design a collision-free guidance control system for small unmanned helicopters; collision avoidance was regarded as a state constraint. A hierarchical control structure consisting of an attitude control system and guidance control system was adopted to simplify the overall control system. The authors propose a simple nonlinear translational model of the helicopter to reduce the computational cost of NMPC. The effectiveness of the proposed collision-free guidance control system was verified through both numerical simulation and a flight experiment. |
---|---|
ISSN: | 1882-4889 1884-9970 |
DOI: | 10.9746/jcmsi.7.347 |