Effect of DC magnetic field on atmospheric pressure argon plasma jet

In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2015-05, Vol.89 (5), p.495-502
Hauptverfasser: Safari, R., Sohbatzadeh, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field is 0–0.28 and 0–0.57 Tesla between the two coils in parallel and transverse applications, respectively. It has been shown that the plasma gas flow plays the main role in magneto-active collision-dominated plasma. The effect of plasma fluid velocity on the jet emission has been discussed, qualitatively. It has been observed that the external DC magnetic field has different trends in parallel and transverse applications. The measurements reveal that the plasma jet irradiance increases in parallel field, while it decreases in transverse field. The former has been attributed to increasing plasma number density and the latter to loss of plasma species that reduces the magneto-plasma jet irradiance and in turn shrinks plasma jet number density. As a result, the plasma fluid velocity is responsible for such trends though the magneto-active plasma remains isotropic.
ISSN:0973-1458
0974-9845
DOI:10.1007/s12648-014-0609-0