Impact of element-level static condensation on iterative solver performance

This paper provides theoretical estimates that quantify and clarify the savings associated to the use of element-level static condensation as a first step of an iterative solver. These estimates are verified numerically. The numerical evidence shows that static condensation at the element level is b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2015-11, Vol.70 (10), p.2331-2341
Hauptverfasser: Pardo, D., Álvarez-Aramberri, J., Paszynski, M., Dalcin, L., Calo, V.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides theoretical estimates that quantify and clarify the savings associated to the use of element-level static condensation as a first step of an iterative solver. These estimates are verified numerically. The numerical evidence shows that static condensation at the element level is beneficial for higher-order methods. For lower-order methods or when the number of iterations required for convergence is low, the setup cost of the elimination as well as its implementation may offset the benefits obtained during the iteration process. However, as the iteration count (e.g., above 50) or the polynomial order (e.g., above cubics) grows, the benefits of element-level static condensation are significant.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.09.005