The importance of ambient and forced vibration measurements for the results of seismic performance assessment of buildings obtained by using a simplified non-linear procedure: case study of an old masonry building

The seismic performance assessment of existing masonry buildings involves many uncertainties, whose impact can be reduced to some extent by using non-destructive in-situ tests of such buildings, at least when destructive in-situ tests, which can provide more reliable results, cannot be performed. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2013-12, Vol.11 (6), p.2105-2132
Hauptverfasser: Snoj, J., Österreicher, M., Dolšek, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The seismic performance assessment of existing masonry buildings involves many uncertainties, whose impact can be reduced to some extent by using non-destructive in-situ tests of such buildings, at least when destructive in-situ tests, which can provide more reliable results, cannot be performed. In this paper the extent of the potential beneficial effects achievable by calibration of a structural model of a building to its experimentally estimated vibration periods has been investigated. This was done by performing measurements of ambient and forced vibrations on an old two-storey masonry building, and by then assessing its seismic performance using a simplified nonlinear method. The results of numerical investigations revealed that the natural vibration periods of such buildings can be reproduced with sufficient accuracy, although it is possible that they will be overestimated or underestimated by analysts by up to around 40 %. This means that the accuracy of the prediction of the intermediate results of the seismic performance assessment of any particular building can be significantly increased by calibration of the structural model. Additionally, the beneficial effects of such calibration were observed even in the case of the final outcome of the nonlinear analysis, which is expressed through the near-collapse limit state capacity in terms of the peak ground acceleration.
ISSN:1570-761X
1573-1456
DOI:10.1007/s10518-013-9494-8