Precise subelliptic estimates for a class of special domains

For the -Neumann problem on a regular coordinate domain Ω ⊂ ℂ n +1 , we prove ∈ -subelliptic estimates for an index ∈ ≥ (2 m ) −1 , where m is the “multiplicity”. We also intend to supply here a much simplified proof of the existing literature. Our approach is founded on the method by Catlin in [2]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2014-07, Vol.123 (1), p.171-181
Hauptverfasser: Khanh, Tran Vu, Zampieri, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the -Neumann problem on a regular coordinate domain Ω ⊂ ℂ n +1 , we prove ∈ -subelliptic estimates for an index ∈ ≥ (2 m ) −1 , where m is the “multiplicity”. We also intend to supply here a much simplified proof of the existing literature. Our approach is founded on the method by Catlin in [2] , which consists of constructing a bounded family of weights {φ δ } whose Levi form is bigger than δ -2∊ on the δ -strip around ∂ Ω.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-014-0017-6