Precise subelliptic estimates for a class of special domains
For the -Neumann problem on a regular coordinate domain Ω ⊂ ℂ n +1 , we prove ∈ -subelliptic estimates for an index ∈ ≥ (2 m ) −1 , where m is the “multiplicity”. We also intend to supply here a much simplified proof of the existing literature. Our approach is founded on the method by Catlin in [2]...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2014-07, Vol.123 (1), p.171-181 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the
-Neumann problem on a regular coordinate domain Ω ⊂ ℂ
n
+1
, we prove
∈
-subelliptic estimates for an index
∈
≥ (2
m
)
−1
, where
m
is the “multiplicity”. We also intend to supply here a much simplified proof of the existing literature. Our approach is founded on the method by Catlin in
[2]
, which consists of constructing a bounded family of weights {φ
δ
} whose Levi form is bigger than δ
-2∊
on the
δ
-strip around
∂
Ω. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-014-0017-6 |