Random Matrix Approach: Toward Probabilistic Formulation of the Manipulator Jacobian
In this paper, we formulate the manipulator Jacobian matrix in a probabilistic framework based on the random matrix theory (RMT). Due to the limited available information on the system fluctuations, the parametric approaches often prove to be inadequate to appropriately characterize the uncertainty....
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2015-03, Vol.137 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we formulate the manipulator Jacobian matrix in a probabilistic framework based on the random matrix theory (RMT). Due to the limited available information on the system fluctuations, the parametric approaches often prove to be inadequate to appropriately characterize the uncertainty. To overcome this difficulty, we develop two RMT-based probabilistic models for the Jacobian matrix to provide systematic frameworks that facilitate the uncertainty quantification in a variety of complex robotic systems. One of the models is built upon direct implementation of the maximum entropy principle that results in a Wishart random perturbation matrix. In the other probabilistic model, the Jacobian matrix is assumed to have a matrix-variate Gaussian distribution with known mean. The covariance matrix of the Gaussian distribution is obtained at every time point by maximizing a Shannon entropy measure (subject to Jacobian norm and covariance positive semidefiniteness constraints). In contrast to random variable/vector based schemes, the benefits of the proposed approach now include: (i) incorporating the kinematic configuration and complexity in the probabilistic formulation; (ii) achieving the uncertainty model using limited available information; (iii) taking into account the working configuration of the robotic systems in characterization of the uncertainty; and (iv) realizing a faster simulation process. A case study of a 2R serial manipulator is presented to highlight the critical aspects of the process. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4027871 |